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Flat Slab to be designed

A

6m x6m

Panel

N/mm?2

40

Fcu

460 N/mm?2

mm

20

Cover

200 mm

Depth

mm

12

MaX bar diameter

24 KN/M?

Conc. Wt.

4.8 KN/M?

UDL Dead

KN/M?

5

UDL Live
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BS8110

A flat slab floor is a reinforced concrete slab supported directly by concrete columns without

the use of beams.

The flat floor slab has many advantages over the beam and slab floor. The simplified
formwork and overall reduced storey height make it more economical. Windows can be

extended up to the underside of the slab and there are no beams to obstruct the light.

The analysis of a flat slab structure may be carried out by dividing the structure into a series
of equivalent frames. The moments in these frames may be determined by a computer

program or a hand-calculated structural analysis.
This report compares the traditional and new methods of designing flat slabs.

It has already been shown that LUSAS is capable of designing this slab using a finite element

analysis.

The slab is now designed by a hand analysis to BS8110. The results for the quantity of
reinforcement are quite similar to that provided by LUSAS. However a large discrepancy is
observed between the quantities of mid-span reinforcement provided by both methods.
BS8110 designates 1300mm/m2 while LUSAS requires 950mm/m2. This is not to say that
LUSAS has under-designed the slab, rather that BS110 adopts a more conservative design
approach.

When designing to this slab it is likely cracking of the concrete will occur in the tension
zones. This cracking however, does not detract from the safety of the structure provided there
is good reinforcement bonding to ensure that the cracks are restrained from opening so that

the embedded steel continues to be protected from corrosion.
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The Finite Element Method

The finite element method is a general form of analysis to get numerical solutions. It can be
applied to stress, heat transfer, fluid flow, electrical fields and more. They are generally
applied to complex problems that cannot be analysed by classical or standard methods. The
geometry of a problem is broken up into smaller triangular or quadrilateral “elements”. These
contain “nodes” in the corners as well as, but necessarily, along the lines. The nodes are
common to the elements it touches so that it must always connect to these elements. This
means the geometry of a problem has a continuity of displacement meaning that regardless of
what is being analysed (or the magnitude) the elements must remain connected at these
points. A mesh is the combination of nodes and elements. The size of the elements and
arrangement of the mesh helps to dictate the accuracy of solution. The more elements used

and the more regular the mesh the more accurate the solution.

The advantages of the finite element method are that it can be adapted to a wide range of
complex problems, it returns results with suitable accuracy for engineers and, using
computers, complex problems can be solved relatively quickly. Disadvantages include the
difficulties in locating problems that don’t allow a computer analysis due to the complexity of
a model setup especially in very large scale models, the possible inability to see mistakes that
throw off results again to the complexity and the inability of the method to model possible

discontinuities of the elements during the analysis.

LUSAS Finite Element Analysis

The analysis was done for the typical flat slab arrangement shown above. It was created in
LUSAS civil and structural (academic version). Due to the constraints of the academic
version the size of the problem had to be limited. This included the use of a mesh size line
division of just four, which reduces the accuracy of the model. Essentially the model analysed
is a 12x12x0.2m flat slab supported by one shear wall and six columns spaced 6m apart. The
supports are assumed to only support the slab vertically and as such do not represent any
monolithic conditions that may be present. The mesh used in the analysis was defined for a
thick plate. This was further modelled as an irregular mesh with triangular elements and

quadratic interpolation. LUSAS has common structural material properties saved so that a
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models material/s can easily be defined. In this case the material attributed to the model was

long term C40 concrete as defined by BS8110. These are all defined in the attribute tab.

The loading on the slab is a combination of uniformly distributed dead and live load that
gives the worst case scenario for all necessary results. This was achieved by first defining the
dead load (DL) as the mass of the concrete (given by the material properties) multiplied by g
(9.81 m/s2). In LUSAS this is known as a body force. The live load (LL) was defined as 5000
N global distributed per unit area i.e. 5 KN/m?. The max load, as defined by BS8110, is
1.4DL + 1.6LL and the min load as 1.0DL. By defining eight separate load cases in LUSAS
for the four slab panels each with their two forms of loading as well as the range of max and
min for the DL and LL separately it is possible to analyse the worst case scenario for all
sixteen possible load combinations. The max and min range of DL being 1.4DL and 1.0DL
and the max and min range of LL being 1.6LL and 0.OLL respectfully. A smart load
combination is employed with 1.0 as the permanent load factor and 0.4 variable load factor
for dead load. The permanent load factor and variable load factor for live load are 1.6 and 0
respectfully. Upon analysis this returns a type of 3D envelope that (for this case) includes
bending moment in the X and Y directions in the top and bottom of the slab, the required

steel reinforcement in these areas as well as the expected crack widths.

For the steel reinforcement to be calculated a code needs to be chosen to work with (BS8110)
as well as bar sizes, spacing, top/bottom cover and steel strength. Other values already
decided will have to be repeated for consistency i.e. slabs depth. Changing the bar diameter
only affects the steel area calculated by reducing the length of the lever arm but bar diameter
and spacing do affect the crack widths found. An iterative process can be used to find the
steel actual size and spacing of steel required or, as far more likely, the effect of the change in
lever arm will be so small that the chosen bar size and spacing from the results will still be

adequate when the reduced lever arm is included.

This model arrangement, including slab dimensions, supports, loading etc. can be easily be
repeated for any variation. For instance, an altered model that can take account of holes,
concrete core supports or a less regular slab shape can easily be defined. LUSAS also has
many examples that go through a step-by-step analysis and explain how to perform each

command.
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Crack Widths

Cracking needs to be controlled in concrete as it is a serviceability requirement. It can,
however, affect the strength of reinforced concrete indirectly as it may compromise the cover
to the steel reinforcement. This means the steel may corrode under medium to mild
conditions. BS8110 defines the max crack width generally as 0.3 mm. As the tensile force is
taken to be zero it will not directly affect the calculations though. Finite element analysis
cannot take account of this discontinuity of material due to the required compatibility of
displacement of the finite elements. LUSAS does not require material properties and
thickness to analyse the bending moment in the slab. This is done using the 2D meshed
surface with fixed points. Once it has these values an analysis of the given section and bar
position can be done to calculate the required steel. Although not shown in LUSAS, it must
assume a zero or largely diminished concrete tensile strength otherwise the required
balancing steel area calculated would be zero as the concrete in compression would be
balanced by the concrete in tension. So although LUSAS requires this continuity it does not
affect the required results to a great extent as it is required in the bending moment analysis
and not the analysis of the section. Therefore the difference between the two methods in this
regard is negligible. The bending moment from BS8110 is found using formulae and any

difference should be from this difference in analysis.

The beam size and spacing does affect the magnitude of the crack widths and through the
LUSAS analysis it was found that the critical factor for the sizing of the bars in the top of the
slab in both directions was crack limitation. This shows that the crack width is a very

important factor to be considered in flat slabs.

The max crack widths calculated from LUSAS are shown below and show compliance with

the 0.3mm max allowed.
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Moments
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Structural Analysis IV — Flat Slabs
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